Institusion
Institut Teknologi Bandung
Author
WIBISONO (NIM 23505023), YUDI (STUDENT ID : )
Subject
Datestamp
2017-09-27 15:37:07
Abstract :
Masalah utama dalam penggunaan handheld device adalah ukuran layar yang kecil sehingga mempersulit pengguna untuk mencari dan memperoleh informasi tekstual. Penggunaan peringkasan dokumen dapat membantu memecahkan masalah ini, tetapi kalimat yang dihasilkan masih terlalu panjang. Kompresi kalimat dapat diaplikasikan untuk mengurangi panjang kalimat tanpa menghilangkan informasi yang penting. Kompresi kalimat pada tesis ini menggunakan Hidden Markov Model (HMM) yang diadaptasi dari model statistical translation dan HMM-Hedge. Algoritma Viterbi digunakan untuk mencari susunan kata yang paling optimal. Eksperimen dilakukan untuk mengkaji pengaruh penambahan tag simbol numerik dan tag entitas pada preprocessing, bobot probabilitas pada model HMM, dan bigram smoothing. Selain itu kinerja metode HMM ini dibandingkan dengan metode Knight-Marcu Noisy Channel. Eksperimen dalam tesis ini menggunakan koleksi kalimat Ziff-Davis yang terdiri atas 1067 pasang kalimat. Hasil eksperimen memperlihatkan bahwa HMM terbaik dibangun dengan penambahan tag simbol numerik pada preprocessing, Jelinek Mercer smoothing dengan = 0.1, dan bobot probabilitas = 0.1. Setelah dibandingkan dengan metode Knight-Marcu Noisy Channel, ternyata kinerja HMM masih lebih rendah.