DETAIL DOCUMENT
IDENTIFIKASI BUAH PISANG FORMALIN MENGGUNAKAN METODE LEARNING VECTOR QUANTIZATION (LVQ)
Total View This Week0
Institusion
Universitas Mercu Buana Yogyakarta
Author
Musa, Rahmat
Subject
QA75 Electronic computers. Computer science 
Datestamp
2021-06-29 04:07:23 
Abstract :
Pisang yang matang dengan proses kimiawi atau tidak matang secara alami biasanya, hal ini bisa dikenali dengan adanya bercak-bercak berwarna kehitaman pada permukaan kulitnya. Tetapi pengenalan secara visual memiliki kekurangan yaitu sulit dalam mengenali kemiripan antara pisang formalin dan pisang alami sehingga berdampak pada kurang akurat nya terhadap identifikasi tersebut. Pada penelitian ini, dibangun suatu sistem yang dapat menentukan buah pisang formalin maupun buah pisang alami melalui identifikasi citra digital menggunakan supervised classification. Citra yang akan diidentifikasi sebelumnya melewati proses transformasi warna RGB (Red Green Blue) ke Grayscale, dan proses ekstraksi fitur tekstur menggunakan fitur-fitur yang dapat dikenali secara statistis melalui histogram, berupa rerata, standar deviasi, skewness, kurtosis, energi, entropi dan smoothness. Hasil ekstraksi fitur tekstur diklasifikasi dengan LVQ (Learning Vector Quantization) untuk menentukan buah pisang formalin atau alami. Pengujian dilakukan dengan 122 data sampel citra buah pisang, 100 citra sebagai data latih yang terdiri dari 50 citra untuk pisang alami dan 50 citra untuk pisang formalin, 22 citra sebagai data uji. Hasil pengujian menunjukkan metode LVQ memiliki persentase terbaik pada learning rate 0.1, penurunan learning rate 0.75 dan maksimal iterasi 1000 dengan iterasi terkecil yaitu 7, memperoleh hasil accuracy 90.90%, precision 84.61% dan recall 100%. 
Institution Info

Universitas Mercu Buana Yogyakarta