DETAIL DOCUMENT
KLASIFIKASI JENIS BATIK DAERAH MENGGUNAKAN CONVOLUTIONAL NEURAL NETWORK BERBASIS TELEGRAM BOT
Total View This Week0
Institusion
Universitas Stikubank
Author
NURFAJRI, ROBBY BIRHAM
Subject
QA76 Computer software 
Datestamp
2022-09-27 03:13:52 
Abstract :
Batik pada setiap daerah di Nusantara memiliki ragam hias dengan ciri khusus pada tiap daerah. Saat ini yang sering terjadi dalam mengenal pola motif batik dari daerah tertentu sering mengalami kesulitan karena beragamnya motif batik yang dimiliki oleh setiap daerah. Sedemikian beragamnya motif batik dari berbagai daerah diperlukan identifikasi satu motif yang dapat mencirikan kekhasan satu daerah. Menyikapiahal-halatersebut, diperlukan satu aplikasi yang bisa melakukan deteksiadanaklasifikasi motif batik berdasarkan daerah asal melalui telegram bot. Metode yang digunakan untuk mengidentifikasi keberagaman motif menggunakan ConvolutionalaNeuralaNetwork (CNN) dengan arsitekturaResNet 50. Hasil dari training model klasifikasi Convolutional Neural Network diuji dengan data test menghasilkan hasil yang cukup baik dengan nilai akurasi 96%. Hasil uji klasifikasi data test berupa data lain berjumlah 1180 gambar dengan masing-masing kelas terdiri dari 60-70 gambar diperoleh akurasi yang cukup baik sebesar 69%. Aplikasi ini harapannya dapat membantu masyarakat untuk mengenali dan mengidentifikasi jenis batik daerah menggunakan telegram bot. Batik in each region in the archipelago has a variety of decorations with special characteristics in each region. Currently, what often happens in recognizing patterns of batik motifs from certain regions is that they often experience difficulties because of the variety of batik motifs owned by each region. With such a variety of batik motifs from various regions, it is necessary to have a motif that can characterize the uniqueness of a region. In response to these things, we need an application that can detect and classify batik motifs based on the region of origin via a telegram bot. The method used to identify the diversity of motifs using Convolutional Neural Network (CNN) with ResNet 50 architecture. The results of the Convolutional Neural Network classification training model were tested with data testing yielding fairly good results with an accuracy value of 96%. The results of the test data classification test in the form of other data found 1180 images with each class consisting of 60-70 images obtained a fairly good accuracy of 69%. It is hoped that this application can help the community to recognize and identify the types of regional batik using telegram bots. 
Institution Info

Universitas Stikubank