DETAIL DOCUMENT
PREDIKSI KECEPATAN ANGIN DI KEPULAUAN RIAU MENGGUNAKAN JORDAN RECURRENT NEURAL NETWORK (JRNN) (Studi Kasus : Kota Tanjungpinang)
Total View This Week0
Institusion
Universitas Maritim Raja Ali Haji
Author
Charlie, Limbongan
Nerfita, Nikentari
Alena, Uperiati
Subject
004.65.Jaringan Komunikasi Komputer 
Datestamp
2021-07-22 16:34:48 
Abstract :
Pengetahuan mengenai kecepatan angin merupakan salah satu faktor yang mempengaruhi kehidupan masyarakat pada beberapa sektor seperti di laut atau sektor lainnya. Pengetahuan tersebut akan dijadikan sebagai bahan pertimbangan dalam mencari solusi ketika akan melakukan kegiatan di setiap sektornya. Oleh karena itu dilakukan penelitian untuk melatih pola data prediksi kecepatan angin dengan menggunakan data mulai tanggal 1 Januari sampai 23 Oktober tahun 2017 yang didapat dari BMKG kota Tanjungpinang. Penelitian ini dilakukan dengan menggunakan metode JST Jordan Recurrent Neural Network (JRNN), dikarenakan JRNN memiliki waktu penelitian yang relatif lebih singkat dan dapat menghasilkan output dengan tingkat akurasi yang cukup tinggi. Metode JRNN secara umum memiliki tahapan diantaranya ialah menentukan parameter pengujian. Pada penelitian ini penentuan nilai parameter pengujian dilakukan secara acak berdasarkan 296 data yang dibagi menjadi dua bagian yakni 236 data untuk pelatihan dan 60 data untuk pengujian. Dengan menggunakan data pelatihan tersebut maka didapat nilai MSE terkecil pada hidden unit 6 dan learning rate 0,0001 sebesar 1,95011. Dengan menggunakan data pengujian tersebut dan parameter terbaik didapat MSE sebesar 2.477481 dan MAPE 0.1920006. 
Institution Info

Universitas Maritim Raja Ali Haji