Institusion
Institut Teknologi Sepuluh Nopember
Author
Jalil, Muchamad Maroqi Abdul
Subject
RA971 Health services administration.
Datestamp
2023-08-02 04:12:49
Abstract :
Di Indonesia, Penyakit Ginjal Kronis (PGK) menduduki urutan ke-8 sebagai faktor pendorong kematian dan kecacatan. Sebagai tindak lanjut, Continuous Ambulatory Peritoneal Dialysis (CAPD) ditetapkan sebagai alternatif terapi untuk stadium akhir PGK. CAPD mampu mempertahankan kualitas hidup pasien 90% lebih baik dari terapi ginjal lainnya. Namun, hal tersebut dapat tercapai apabila pasien CAPD memiliki self-monitoring yang baik. Pada kenyataannya, 16% kematian pasien PGK disumbang oleh komplikasi dengan tingkat kelalaian pasien mencapai 74%. Di sisi lain, kehadiran berbagai macam aplikasi telemedicine di Indonesia akan mempermudah pelayanan kesehatan ataupun sebagai sarana telemedicine pemantauan jarak jauh. Oleh karena itu, sistem yang terdiri dari sistem pendeteksian dan pemantauan dini secara real-time terhadap risiko komplikasi CAPD dirancang sebagai upaya preventif dini risiko komplikasi CAPD. Sistem yang dibangun terdiri dari aplikasi Android pendeteksi dini risiko komplikasi CAPD bagi pasien dan website pemantauan risiko komplikasi CAPD bagi tenaga medis. Kebutuhan kedua platform digali melalui wawancara kepada pasien CAPD dan tenaga medis secara langsung untuk memastikan kesesuaian dengan kebiasan pelaksanaan treatment CAPD. Fungsionalitas digitalisasi dan otomatisasi dalam aplikasi meliputi pencatatan digital, pendeteksian dini risiko komplikasi otomatis berbasis deep learning, dan pencegahan melalui edukasi terkait CAPD dari chatbot. Sedangkan, fungsionalitas utama pemantauan pada website dilengkapi dengan progress melalui tampilan grafik penggantian hingga ringkasan data penggantian lengkap termasuk selisih total volume penggantian hairan. Dalam implementasinya, basis data utama memanfaatkan Firestore Database dari Google Firebase yang berbasis NoSQL demi security dan reliability fungsionalitas sistem. Kode program pada platform aplikasi menerapkan Clean Architecture dengan Model-View-View Model (MVVM) dan pada website menerapkan modifikasi Model-View-Controller (MVC) untuk mendukung kemudahan dalam maintain dan debug program. Berdasarkan hasil evaluasi kinerja fungsionalitas sistem baik secara manual hingga kepada pasien dan tenaga medis CAPD secara langsung, sistem ini berjalan optimal dengan keseluruhan kasus pengujian 100% terpenuhi. Oleh karena itu, sistem ini sangat berpotensi dikembangkan lebih lanjut dan diharapkan mampu untuk mempercepat pendeteksian, pemantauan, dan penanganan komplikasi CAPD.
=============================================================================================================================
Chronic Kidney Disease (CKD) is the 8th leading cause of death and disability in Indonesia. In response, Continuous Ambulatory Peritoneal Dialysis (CAPD) has been introduced as an alternative treatment for the advanced stage of CKD. CAPD has shown to improve the patient's quality of life by 90% compared to other renal therapies. However, successful outcomes can only be achieved if CAPD patients engage in proper self-monitoring. Shockingly, 16% of CKD-related deaths are attributed to complications resulting from patient negligence, with a staggering negligence rate of 74%. Fortunately, Indonesia has seen the emergence of various telemedicine applications that facilitate healthcare services and remote monitoring. Therefore, a real-time early detection and monitoring system has been designed to proactively address the risk of CAPD complications. This system consists of an Android application, enabling patients to detect complications early, and a website for medical personnel to monitor these risks. To ensure alignment with standard CAPD practices, the development of these platforms involved direct interviews with both CAPD patients and medical professionals. The application incorporates digitalization and automation features such as digital record-keeping, automatic deep learning-based risk detection, and educational resources on CAPD through chatbots to prevent complications. Meanwhile, the website serves as the primary monitoring tool, displaying progress through graphs and providing a comprehensive summary of replacement data, including discrepancies in total replacement volumes. To ensure security and reliability, the system relies on the NoSQL-based Firestore Database from Google Firebase as the main database. The application platform utilizes the Clean Architecture with the Model-View-View Model (MVVM) pattern, while the website employs the Model-View-Controller (MVC) pattern. These architectural choices facilitate easy maintenance and debugging of the programs. Through evaluations conducted with both patients and CAPD medical personnel, the system has demonstrated optimal performance, fulfilling all test cases with a 100% success rate. This promising outcome suggests that further development of the system is warranted, as it has the potential to expedite the detection, monitoring, and treatment of CAPD complications.