DETAIL DOCUMENT
Perbandingan Analisis Diskriminan Dan Regresi Logistik Biner Pada Potensi Kebangkrutan Perusahaan Sub Sektor Makanan Dan Minuman Saat Covid-19
Total View This Week0
Institusion
Institut Teknologi Sepuluh Nopember
Author
Savitri, Alifa Putri
Subject
QA278.2 Regression Analysis. Logistic regression 
Datestamp
2023-08-03 06:05:26 
Abstract :
Covid-19 adalah penyakit menular yang disebabkan oleh jenis coronavirus. Pada bulan Desember 2019, wabah ini dimulai di Wuhan, Tiongkok. Kemudian, tanggal 11 Maret 2020, World Health Organization (WHO) menyatakan virus Corona sebagai pandemi global. Di Indonesia, pada tanggal 2 Maret 2020, Presiden Joko Widodo mengumumkan adanya dua kasus positif Covid-19. Berdasarkan survei online yang dilakukan oleh Badan Pusat Statistika (BPS) pada 12-23 Oktober 2022, terdapat perubahan pendapatan di triwulan III tahun 2020 akibat dampak Covid-19. Survei ini juga menunjukkan bahwa 48,60% pelaku usaha terkendala dalam memasarkan atau menjual produknya dan hingga berpotensi mengalami kebangkrutan. Salah satu sub sektor yang terdampak adalah makanan dan minuman. Keberlangsungan perusahaan makanan dan minuman penting karena pengaruhnya terhadap ekspor, impor, dan kebutuhan sehari-hari. Untuk menghindari potensi kebangkrutan, dapat menganalisis rasio keuangan menggunakan analisis diskriminan dan regresi logistik biner. Pada penelitian ini status awalnya dilihat dari laba bersih 2 tahun berturut-turut. Dengan dilakukan oversampling pada data dengan probabilitas 35% dengan penambahan data sebanyak 29 data pada data berkategori berpotensi bangkrut. Hasil penelitian menunjukkan hasil dari model analisis diskriminan yaitu dengan ketepatan klasifikasi sebesar 87,50% dengan menggunakan dua variabel independen yang signifikan yaitu Debt to Assets Ratio (DAR) dan Return of Assets (ROA) dan hasil dari analisis regresi logistik biner yaitu dengan ketepatan klasifikasi 91,67%. Masing-masing metode sama-sama memiliki kekurangan dalam pembuatan model yang terbentuk. Jika dilihat dari ketepatan klasifikasi analisis regresi logistik biner memiliki ketepatan klasifikasi lebih baik. Sedangkan, bila dilihat dari ketepatan variabel yang terbentuk, analisis diskriminan mampu menunjukkan variabel independen mana saja yang dapat digunakan untuk mengidentifikasi potensi kebangkrutan suatu perusahaan dibandingkan analisis regresi logistik biner. ================================================================================================================================== Covid-19 is an infectious disease caused by a type of coronavirus. In December 2019, the outbreak originated in Wuhan, China. Subsequently, on March 11, 2020, the World Health Organization (WHO) declared the Coronavirus as a global pandemic. In Indonesia, on March 2, 2020, President Joko Widodo announced the presence of two positive cases of Covid-19. Based on an online survey conducted by the Central Bureau of Statistics (BPS) from October 12-23, 2022, there were income changes in the third quarter of 2020 due to the impact of Covid-19. The survey also revealed that 48.60% of business actors faced constraints in marketing or selling their products and were at risk of bankruptcy. One of the sub-sectors affected was the food and beverage industry, which plays a crucial role in export, import, and daily necessities. To avoid potential bankruptcy, financial ratios can be analyzed using discriminant analysis and binary logistic regression. In this study, the initial status was observed based on the net profit for two consecutive years. Oversampling was performed on data with a probability of 35% by adding 29 data categorized as potentially bankrupt. The results of the study showed that the discriminant analysis model achieved a classification accuracy of 87.50% using two significant independent variables, Debt to Assets Ratio (DAR), and Return of Assets (ROA). Meanwhile, the binary logistic regression analysis achieved a classification accuracy of 91.67%. Both methods have their limitations in forming the models. Looking at the classification accuracy, the binary logistic regression analysis performed better. On the other hand, in terms of identifying the significant independent variables to predict potential bankruptcy, the discriminant analysis proved more effective compared to the binary logistic regression analysis. 
Institution Info

Institut Teknologi Sepuluh Nopember